Continuous and batch cultures of Escherichia coli KJ134 for succinic acid fermentation: metabolic flux distributions and production characteristics
نویسندگان
چکیده
BACKGROUND Succinic acid (SA) has become a prominent biobased platform chemical with global production quantities increasing annually. Numerous genetically modified E. coli strains have been developed with the main aim of increasing the SA yield of the organic carbon source. In this study, a promising SA-producing strain, E. coli KJ134 [Biotechnol. Bioeng. 101:881-893, 2008], from the Department of Microbiology and Cell Science of the University of Florida was evaluated under continuous and batch conditions using D-glucose and CO2 in a mineral salt medium. Production characteristics entailing growth and maintenance rates, growth termination points and metabolic flux distributions under growth and non-growth conditions were determined. RESULTS The culture remained stable for weeks under continuous conditions. Under growth conditions the redox requirements of the reductive tricarboxylic acid (TCA) cycle was solely balanced by acetic acid (AcA) production via the pyruvate dehydrogenase route resulting in a molar ratio of SA:AcA of two. A maximum growth rate of 0.22 h(-1) was obtained, while complete growth inhibition occurred at a SA concentration of 18 g L(-1). Batch culture revealed that high-yield succinate production (via oxidative TCA or glyoxylate redox balancing) occurred under non-growth conditions where a SA:AcA molar ratio of up to five was attained, with a final SA yield of 0.94 g g(-1). Growth termination of the batch culture was in agreement with that of the continuous culture. The maximum maintenance production rate of SA under batch conditions was found to be 0.6 g g(-1) h(-1). This is twice the maintenance rate observed in the continuous runs. CONCLUSIONS The study revealed that the metabolic flux of E. coli KJ134 differs significantly for growth and non-growth conditions, with non-growth conditions resulting in higher SA:AcA ratios and SA yields. Bioreaction characteristics entailing growth and maintenance rates, as well as growth termination markers will guide future fermentor designs and improvements.
منابع مشابه
Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation.
Comparative analysis of the genomes of mixed-acid-fermenting Escherichia coli and succinic acid-overproducing Mannheimia succiniciproducens was carried out to identify candidate genes to be manipulated for overproducing succinic acid in E. coli. This resulted in the identification of five genes or operons, including ptsG, pykF, sdhA, mqo, and aceBA, which may drive metabolic fluxes away from su...
متن کاملIn silico metabolic pathway analysis and design: succinic acid production by metabolically engineered Escherichia coli as an example.
The intracellular metabolic fluxes can be calculated by metabolic flux analysis, which uses a stoichiometric model for the intracellular reactions along with mass balances around the intracellular metabolites. In this study, we have constructed in silico metabolic pathway network of Escherichia coli consisting of 301 reactions and 294 metabolites. Metabolic flux analyses were carried out to est...
متن کاملSuccinic acid production from continuous fermentation process using Mannheimia succiniciproducens LPK7.
To achieve a higher succinic acid productivity and evaluate the industrial applicability, this study used Mannheimia succiniciproducens LPK7 (knock-out: lahA, pflB, pta-ackA), which was recently designed to enhance the productivity of succinic acid and reduce by-product secretion. Anaerobic continuous fermentation of Mannheimia succiniciproducens LPK7 was carried out at different glucose feed c...
متن کاملIn silico profiling of cell growth and succinate production in Escherichia coli NZN111
BACKGROUND Succinic acid is a valuable product due to its wide-ranging utilities. To improve succinate production and reduce by-products formation, Escherichia coli NZN111 was constructed by insertional inactivation of lactate dehydrogenase (LDH) and pyruvate formate lyase (PFL) encoded by the genes ldhA and pflB, respectively. However, this double-deletion mutant is incapable of anaerobically ...
متن کاملMetabolic flux analysis of Escherichia coli expressing the Bacillus subtilis acetolactate synthase in batch and continuous cultures.
Metabolically engineered Escherichia coli expressing the B. subtilis acetolactate synthase has shown to be capable of reducing acetate accumulation. This reduction subsequently led to a significant enhancement in recombinant protein production. The main focus of this study is to systematically examine the effect of ALS in the metabolic patterns of E. coli in batch and continuous culture. The sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2013